The Algebra of Discrete Torsion

نویسنده

  • RALPH M. KAUFMANN
چکیده

We analyze the algebraic structures of G–Frobenius algebras which are the algebras associated to global group quotient objects. Here G is any finite group. These algebras turn out to be modules over the Drinfeld double of the group ring k[G]. We furthermore prove that discrete torsion is a universal group action of H(G, k∗) on G–Frobenius algebras by isomorphisms of the underlying linear structure. These morphisms are realized explicitly by taking the tensor product with twisted group rings. This gives an algebraic realization of discrete torsion and allows for a treatment analogous to the theory of projective representations of groups, group extensions and twisted group ring modules. Lastly, we identify another set of discrete universal transformations among G–Frobenius algebras pertaining to their super–structure and classified by Hom(G,Z/2Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Witt group of Hermitian forms over a noncommutative discrete valuation ring

We investigate Hermitian forms on finitely generated torsion modules over a noncommutative discrete valuation ring. We also give some results for lattices, which still are satisfied even if the base ring is not commutative. Moreover, for a noncommutative discrete-valued division algebra D with valuation ring R and residual division algebra D̄, we prove that W(D̄) ∼=WT(R), where WT(R) denotes the ...

متن کامل

Discrete torsion, symmetric products and the Hilbert scheme

Recently the understanding of the cohomology of the Hilbert scheme of points on K3 surfaces has been greatly improved by Lehn and Sorger [18]. Their approach uses the connection of the Hilbert scheme to the orbifolds given by the symmetric products of these surfaces. We introduced a general theory replacing cohomology algebras or more generally Frobenius algebras in a setting of global quotient...

متن کامل

Cyclic Cohomology and Higher Rank Lattices

We review topologically Nistor’s computation of the homogeneous part of the periodic cyclic cohomology of crossed products Γ⋉A of torsion-free discrete groups Γ with a complex Γ-algebra A. We use periodic cyclic cohomology associated to bornological algebras. Let G be a complex connected semisimple Lie group and B be a minimal parabolic subgroup of G. Applied to torsion-free discrete subgroups ...

متن کامل

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002